

SmartFood: Engaging citizens in food diversity in cities

D5.4. Prototype of the SmartFood sensor system

Funded by

Operated by

Working together for a green, competitive and inclusive Europe

SmartFood has received funding from the Norway Grants 2014-2021 and the state budget of Poland via the National Centre for Research and Development within "Applied Research" Programme. The project benefits from a grant of €1,364,249.99 from Norway as well as a grant of €240,750.00 from the state budget of Poland. The total project value is €1,604,999.99. The aim of the project is to provide a novel evidence-based socio-technological framework of sustainable food production and consumption towards the sustainable smart city of the future.

Grant agreement No.	NOR/IdeaLab/SmartFood/0005/2020-00		
Acronym	SmartFood		
Full title	Engaging citizens in food diversity in cities		
Funding scheme	Norway Grants, The IdeaLab Call for Full Proposals, Cities for the future: services and solutions		
Start date	September 2021	Duration	34 Months
Project website	www.smartfood.city		
Project Promotor	Research and Innovation Centre Pro-Akademia		
Deliverable	D5.4 Prototype of the SmartFood Sensor system		
Version	2 nd version – D5.4		
Work package	WP5		
Date of Delivery	15.01.2023, updated on 30.05.2024		
Nature	Others: Prototype with report		
Dissemination level	CO – Restricted to members of the consortium		
Lead partner	NILU		
Responsible author	Tuan Vu Cao (NILU)		
Contributors	Torbjørn Heltne (NILU)		
Reviewer(s)	Łukasz Gontar (RIC)		
Keywords	Mother board, I/O interface, sensing system, layout, testbench		

Executive summary

This deliverable is the result for the work implementation on *T5.4 SmartFood sensor systems - lab-scale prototype (NILU, RIC)*, where sensing system will provide sensor data on the real-time food system to the users. The sensor systems have following elements: i) Behavioural sensors is used for opening/closing of cabinets; camera sensing will be installed for identifying plant growth and plant type; ii) Plant required sensors: pH, air humidity, temperature, etc.; iii) Actuators: light, water valves, ventilation – fans, peristaltic pump for dosing of fertilisers. iv) Data communication. NILU develops the sensor system, while RIC co-designs by providing the parameters and testing and validating the sensing system in real-setting.